- Affiliation
- Leiden University
- Position
- Associate Professor

Papers bookmarked by Vadim Cheianov

- We analyze a manifestation of the partial ordering transition of adatoms on graphene in resistivity measurements. We find that Kekule mosaic ordering of adatoms increases sheet resistance of graphene, due to a gap opening in its spectrum, and that critical fluctuations of the order parameter lead to a non-monotonic temperature dependence of resistivity, with a cusp-like minimum at T=T_c.
#### Importance of interband transitions for the fractional quantum Hall effect in bilayer graphenever. 2

Several recent works have proposed that electron-electron interactions in bilayer graphene can be tuned with the help of external parameters, making it possible to stabilize different fractional quantum Hall states. In these prior works, phase diagrams were calculated based on a single Landau level approximation. We go beyond this approximation and investigate the influence of polarization effects and virtual interband transitions on the stability of fractional quantum Hall states in bilayer graphene. We find that for realistic values of the dielectric constant, the phase diagram is strongly modified by these effects. We illustrate this by evaluating the region of stability of the Pfaffian state.- We give a microscopic derivation of the chiral Luttinger liquid theory for the Laughlin states. Starting from the wave function describing an arbitrary incompressibly deformed Laughlin state (IDLS) we quantize these deformations. In this way we obtain the low-energy projections of local microscopic operators and derive the quantum field theory of edge excitations directly from quantum mechanics of electrons. This shows that to describe experimental and numeric deviations from chiral Luttinger liquid theory one needs to go beyond Laughlin's approximation. We show that in the large N limit the IDLS is described by the dispersionless Toda hierarchy.