- Affiliation
- UConn
- Position
- Assistant Professor
- Homepage
- http://www.phys.uconn.edu/~bezrukov/

Papers bookmarked by Fedor Bezrukov

- We argue that the Higgs boson of the Standard Model can lead to inflation and produce cosmological perturbations in accordance with observations. An essential requirement is the non-minimal coupling of the Higgs scalar field to gravity; no new particle besides already present in the electroweak theory is required.
- We discuss the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the Higgs boson mass coming from asymptotic safety of the SM. We account for the 3-loop renormalization group evolution of the couplings of the Standard Model and for a part of two-loop corrections that involve the QCD coupling alpha_s to initial conditions for their running. This is one step above the current state of the art procedure ("one-loop matching--two-loop running"). This results in reduction of the theoretical uncertainties in the Higgs boson mass bounds and predictions, associated with the Standard Model physics, to 1-2 GeV. We find that with the account of existing experimental uncertainties in the mass of the top quark and alpha_s (taken at 2sigma level) the bound reads M_H>=M_min (equality corresponds to the asymptotic safety prediction), where M_min=129+-6 GeV. We argue that the discovery of the SM Higgs boson in this range would be in agreement with the hypothesis of the absence of new energy scales between the Fermi and Planck scales, whereas the coincidence of M_H with M_min would suggest that the electroweak scale is determined by Planck physics. In order to clarify the relation between the Fermi and Planck scale a construction of an electron-positron or muon collider with a center of mass energy ~200+200 GeV (Higgs and t-quark factory) would be needed.
#### Semiclassical Calculation of Multiparticle Scattering Cross Sections in Classicalizing Theoriesver. 2

It has been suggested in arXiv:1010.1415 that certain derivatively coupled non-renormalizable scalar field theories might restore the perturbative unitarity of high energy hard scatterings by classicalization, i.e. formation of multiparticle states of soft quanta. Here we apply the semiclassical method of calculating the multiparticle production rates to the scalar Dirac-Born-Infeld (DBI) theory which is suggested to classicalize. We find that the semiclassical method is applicable for the energies in the final state above the cutoff scale of the theory L_*^{-1}. We encounter that the cross section of the process two to N ceases to be exponentially suppressed for the particle number in the final state N smaller than a critical particle number N_{crit} ~ (E L_*)^{4/3}. It coincides with the typical particle number produced in two-particle collisions at high energies predicted by classicalization arguments.